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Focus

Approximation of posterior distribution of Bayesian inverse
problem by Gaussian distribution according to Laplace’s method.

Laplace’s method

1. Replace log-posterior density by second order Taylor
approximation around MAP estimate

2. Renormalise

Examples for use of Laplace approximation

I When sampling posterior distribution is too expensive.
I Inverse problems that are close to linear problem.



Motivation

I Asymptotic properties of Laplace approximation in small
noise or large data limit have been studied extensively.

I In practice, one is often interested in quantifying
approximation error for given noise level.

Problems
Nonlinearity of problem or high problem dimension may cause
large approximation error even for low noise level.

Goal
Understand and quantify influence of
1. nonlinearity of forward mapping,
2. problem dimension

on Laplace approximation error.



Recent results

I Asymptotic behaviour of Laplace approximation in context
of inverse problems: Error in Hellinger distance converges
in order of noise level [Schillings, Sprungk, and Wacker 2020].

I Bernstein–von Mises theorem for inverse problems when
problem dimension tends to infinity with certain rate as
noise level tends to zero [Lu 2017].



Contribution

Main results
Non-asymptotic error estimates in total variation distance for
Laplace approximation in Bayesian inverse problems:

1. Central error estimate

2. Error estimate that makes explicit influence of
non-Gaussianity of likelihood, non-Gaussianity of prior,
and problem dimension

3. Error estimate for perturbed linear problems with Gaussian
prior that makes explicit influence of nonlinear perturbation



Total variation distance

Definition
Total variation distance between two probability measures µ and ν
on (Rd ,B(Rd )) defined by

dTV(µ, ν) = 1
2

∫
Rd

∣∣∣∣dνdλ − dµ
dλ

∣∣∣∣ dλ
= sup

A∈B(Rd )
|ν(A)− µ(A)|,

where λ denotes Lebesgue measure on Rd .

Total variation error of Laplace approximation is measure of
non-Gaussianity of posterior distribution.
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Set-up
For ε > 0, recover x ∈ Rd from noisy measurement y ∈ Rd , where

y = G(x) +
√
εη.

I Nonlinear forward mapping G
I Random noise η ∈ Rd with standard normal distribution

η ∼ N (0, Id )

I Prior distribution

µ(dx) = exp(−R(x))dx

I Posterior distribution given by Bayes’ formula as

µy (dx) ∝ exp
(
− 1
2ε |y − G(x)|2 − R(x)

)
dx



Laplace approximation
Assumption

I(x) := 1
2 |y − G(x)|2 + εR(x)

has unique minimiser x̂ ∈ Rd , I ∈ C2(Rd ,R), and Hessian
(HI)(x̂) is positive definite.

Then, Laplace approximation of µy defined as

Lµy := N (x̂ , εΣ),

where Σ := (HI(x̂))−1. This way,

µy (dx) ∝ exp
(
−1
ε
I(x)

)
dx ,

Lµy (dx) ∝ exp
(
− 1
2ε‖x − x̂‖2Σ

)
dx .



Assumptions
Define Φ(x) := 1

2 |y − G(x)|2, so that I(x) = Φ(x) + εR(x).

Bounds on log-likelihood and log-prior density
Φ,R ∈ C3(Rd ,R) and there exists K > 0 such that

max
{
‖D3Φ(x)‖Σ, ‖D

3R(x)‖Σ

}
≤ K for all x ∈ Rd ,

where ‖D3Φ(x)‖Σ := sup
{
|D3Φ(x)(h1, h2, h3)| : ‖hj‖Σ ≤ 1

}
.

Quadratic bound on log-posterior density
There exists 0 < δ ≤ 1 such that

I(x)− I(x̂) ≥ δ

2‖x − x̂‖2Σ for all x ∈ Rd .

Want to estimate dTV(µy ,Lµy ) in terms of K , δ, d , and ε.



Central error estimate

Theorem
Under previous assumptions on Φ, R, and I, we have

dTV(µy ,Lµy ) ≤ E1(r0;K ) + E2(r0; δ) for all r0 ≥ 0,

where

E1(r0;K ) := (2ε)−
d
2

2
Γ
(

d
2

) ∫ r0

0
f (r)rd−1 exp

(
− 1
2ε r

2
)
dx ,

f (r) := exp
((1 + ε)K

6ε r3
)
− 1,

and

E2(r0; δ) := δ−
d
2

Γ
(

d
2 ,

δ
2ε r

2
0

)
Γ
(

d
2

) .



Optimal choice of r0

Proposition
Optimal choice of r0 in previous estimate is either 0 or satisfies

exp
((1 + ε)K

6ε r3
0

)
− 1− exp

(1− δ
2ε r2

0

)
= 0.

Second error term can be written as

E2(r0; δ) = (2ε)−
d
2

2
Γ
(

d
2

) ∫ ∞
r0

rd−1 exp
(
− δ

2ε r
2
)
dx .



Structure

Introduction

Central error estimate

Explicit error estimate

Perturbed linear problems with Gaussian prior



Explicit error estimate
Theorem
Suppose that previous assumptions on Φ, R, and I hold. If K , δ, ε,
and d satisfy

2
eδ d

2 + 3
2

exp

−1
8

(
6δ 3

2

(1 + ε)ε 1
2K

) 2
3

 ≤ (1 + ε)ε 1
2Kd 3

2

6δ 3
2

≤ 1
8 ,

then
dTV(µy ,Lµy ) ≤ C(1 + ε)ε

1
2KΓd ,

where

C := 2
3
√
2e and Γd :=

Γ
(

d
2 + 3

2

)
Γ
(

d
2

) .

I Note that Γd �
(

d
2

) 3
2 as d →∞.



Asymptotic behaviour as problem dimension d →∞

Index Kd , δd , and εd by d ∈ N.

Corollary
Suppose that previous assumptions hold for all d ∈ N. If
δd ≤ e−1/2, εd ≤ 1,

ε
1
2
dKd → 0, and ε

1
2
dKdd

3
2 ≤ 3

(
δd

−8 ln δd

) 3
2

for all d ∈ N, then for every C > 2
3
√
2e there exists N ∈ N such

that
dTV(µy ,Lµy ) ≤ Cε

1
2
dKdd

3
2

for all d ≥ N.
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Perturbed linear problems with Gaussian prior

I Forward mapping G given by linear mapping with small
nonlinear perturbation of size τ ≥ 0,

Gτ (x) = Ax + τF (x),

where A ∈ Rd×d and F ∈ C3(Rd ).
I Gaussian prior distribution µ = N (m0,Σ0)

Assumption
There exists τ0 > 0, such that for all τ ∈ [0, τ0],

Iτ (x) = 1
2 |Ax + τF (x)− yτ |2 + ε

2‖x −m0‖2Σ0

has unique minimiser x̂τ with (HIτ )(x̂τ ) > 0. Furthermore, yτ , x̂τ ,
and Στ := HIτ (x̂τ )−1 converge as τ → 0 with limτ→0 Στ > 0.



Assumptions

Let B(M) ⊂ Rd denote a closed Euclidean ball with radius M
around the origin.

Bounds on nonlinear perturbation
There exist C0, . . . ,C3 > 0 and M > 0 such that

‖DjF (x)‖Στ
≤ Cj , j = 0, . . . , 3,

for all x ∈ Rd and τ ∈ [0, τ0], and

D3F ≡ 0 on Rd \ B(M).



Error estimate for perturbed linear problems

Theorem
Under the previous assumptions, there exists τ1 ∈ (0, τ0] such that

dTV(µyτ ,Lµyτ ) ≤ CΓd (1 + ε)ε
1
2

(
V (τ)τ + W

2 τ
2
)

for all τ ∈ [0, τ1], where

C := 2
3
√
2e, Γd :=

Γ
(d

2 + 3
2
)

Γ
(d

2
) ,

V (τ) := C3(‖A‖M + |yτ |) + 3C2

∥∥∥∥AΣ
1
2
τ

∥∥∥∥ ,
W := C3C0 + 3C2C1.

Moreover, {V (τ)}τ∈[0,τ1] is bounded.



Conclusion

Laplace approximation in Bayesian inverse problems
I Have non-asymptotic bound for total variation error.
I Under certain conditions, total variation error depends linearly

on non-Gaussianity of likelihood and prior.
I For perturbed linear problems, total variation error depends

linearly on size of nonlinear perturbation.

Outlook
I Estimate error in Wasserstein distance to achieve better or no

dependence on problem dimension.
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