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Set-up
Consider statistical linear inverse problem

Y = Tu† + σZ ,

where
▶ T : X → Y bounded linear forward operator between real separable Hilbert spaces

X and Y,
▶ u† ∈ X unknown quantity of interest,
▶ σ > 0 noise level,
▶ Z white Gaussian noise process on Y.

For each g ∈ Y one has access to real-valued Gaussian random variable

⟨Y , g⟩ =
〈
Tu†, g

〉
Y

+ σ ⟨Z , g⟩ .
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Feature inference

▶ X ,Y typically function spaces such as Lp(Ω) or Hs(Ω) on some domain Ω ⊆ Rd .
▶ Often one is not interested in whole function u† but in certain features of it such as

modes, homogeneity, monotonicity, or support.
▶ Many features can be described by (family of) bounded linear functionals φ ∈ X ∗.
▶ We perform inference for such features by means of statistical hypothesis testing.

Specifically, we test

H0 :
〈
φ, u†

〉
X ∗×X

≤ 0 against H1 :
〈
φ, u†

〉
X ∗×X

> 0.
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Example 1: Support inference in deconvolution

▶ T convolution operator
Tu = h ∗ u

on L2(R) with kernel h.
▶ Question: Is supp u† ∩ (a, b) = ∅?
▶ Under assumption that u† is nonnegative, indicator function φ := 1[a,b] describes

feature of interest 〈
φ, u†

〉
L2

=
∫ b

a
u†(x)dx .
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Example 2: Linearity inference

▶ Direct noisy measurement
Y = f † + σZ

of function f † ∈ H1
0 (0, 1) ∩ H2(0, 1).

▶ Question: Is f † linear on (a, b) ⊆ (0, 1)?
▶ For u ∈ L2(0, 1), let Tu = f be weak solution to

−f ′′ = u on (0, 1), f (0) = f (1) = 0.

▶ Under assumption that f † is concave, φ := 1[a,b] describes feature of interest

〈
φ, u†

〉
L2

= −
∫ b

a
(f †)′′(x)dx .
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Basic properties of hypothesis tests

▶ Hypothesis test Ψ(Y ) takes only values 0 (accepts) and 1 (rejects).
▶ Probability of rejection Pu† [Ψ(Y ) = 1] is called size of test Ψ for u†.

Probability of false rejection
Maximal size of test under hypothesis H0

sup
{
Pu† [Ψ(Y ) = 1] : u† ∈ X satisfies H0

}
is called level (of significance) of test Ψ.

Probability of correct rejection
Size of test under alternative H1 is also called power of test Ψ for u†.
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Unregularized hypothesis testing1

▶ Assume that φ ∈ ran T ∗ and choose Φ0 ∈ Y such that

T ∗Φ0 = φ.

▶ Then ⟨Y , Φ0⟩ is natural estimator for desired quantity

⟨φ, u†⟩X = ⟨T ∗Φ0, u†⟩X = ⟨Φ0, Tu†⟩Y .

▶ Define test
Ψ0(Y ) := 1⟨Y ,Φ0⟩ > c , c ∈ R.

▶ For any α ∈ (0, 1), critical value c = c(φ, α) can be chosen such that test Ψ0 has
level α for testing H0 against H1.

1K. Proksch, F. Werner, A. Munk (2018). Multiscale scanning in inverse problems. Ann. Statist.,
46(6B).

9 / 34



Unregularized hypothesis testing1

▶ Assume that φ ∈ ran T ∗ and choose Φ0 ∈ Y such that

T ∗Φ0 = φ.

▶ Then ⟨Y , Φ0⟩ is natural estimator for desired quantity

⟨φ, u†⟩X = ⟨T ∗Φ0, u†⟩X = ⟨Φ0, Tu†⟩Y .

▶ Define test
Ψ0(Y ) := 1⟨Y ,Φ0⟩ > c , c ∈ R.

▶ For any α ∈ (0, 1), critical value c = c(φ, α) can be chosen such that test Ψ0 has
level α for testing H0 against H1.

1K. Proksch, F. Werner, A. Munk (2018). Multiscale scanning in inverse problems. Ann. Statist.,
46(6B).

9 / 34



Issues

▶ Unregularized level α test has power

Pu† [Ψ0(Y ) = 1] = Q
(

Q−1(α) + ⟨φ, u†⟩
σ ∥Φ0∥

)
.

▶ For certain features, unregularized testing is unfeasable.
1. If φ /∈ ran T ∗, approach not applicable.
2. Probe element Φ0 is solution to ill-posed equation

T ∗Φ0 = φ.

For certain features, norm of Φ0 is huge, and power of unregularized test Ψ0 is
arbitrarily close to level.
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Solutions

Both of these limitations can be overcome by regularized hypothesis tests

ΨΦ,c(Y ) := 1⟨Y ,Φ⟩ > c , Φ ∈ Y, c ∈ R.

1. Maximize (empirical) power among class of regularized level α tests2.
2. Define tests using Bayesian approach: Reject based upon posterior probabilities.
3. Choose probe element Φ as Tikhonov regularized solution to equation T ∗Φ0 = φ.

2R. Kretschmann, D. Wachsmuth, F. Werner (2024). Optimal regularized hypothesis testing in
statistical inverse problems. Inverse Problems 40, 015013.

11 / 34



Questions

1. Do Bayesian tests fall under the framework of regularized hypothesis testing?
2. How do they relate to Tikhonov regularized tests?
3. Do they overcome aforementioned issues? Do they relieve the restrictions on φ?
4. Do they have a high power?
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Bayesian set-up
Consider problem from Bayesian perspective,

Y = TU + σZ .

▶ Assign Gaussian prior distribution Π = N (m0, C0) to U,
▶ C0 symmetric, positive definite, trace class,
▶ U and Z independent.

Conditional distribution of U, given Y = y , almost surely Gaussian N (m, C) with

C = σ2C
1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 ,

m = m0 + C
1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 T ∗(y − Tm0).
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Maximum a posteriori testing

For φ ∈ X , define maximum a posteriori (MAP) test ΨMAP by

ΨMAP(y) :=
{

1 if P [⟨φ, U⟩ > 0|Y = y ] > P [⟨φ, U⟩ ≤ 0|Y = y ] ,

0 otherwise.

▶ Study properties of ΨMAP in frequentistic setting.
▶ Conditional distribution of ⟨φ, U⟩X , given Y = y , is

N (⟨φ, m⟩X , ⟨φ, Cφ⟩X ) .
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Evaluating MAP test

▶ Cdf Fφ of ⟨φ, U⟩X , given Y = y , is

Fφ(t) = P [⟨φ, U⟩ ≤ t|Y = y ] = Q
(

t − ⟨φ, m⟩
⟨φ, Cφ⟩1/2

)
,

where Q is cdf of N (0, 1).

▶ Hence

ΨMAP(y) = 1 ⇔ P [⟨φ, U⟩X > 0|Y = y ] >
1
2

⇔ Fφ(0) <
1
2 ⇔ ⟨φ, m⟩X > 0.
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Connection with Tikhonov regularization

▶ We have
⟨φ, m⟩X = ⟨y , ΦMAP⟩ − ⟨m0, T ∗ΦMAP − φ⟩X ,

where
ΦMAP := TC

1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 φ.

▶ If T is compact and C0 commutes with T ∗T , then ΦMAP is minimizer of

Φ 7→ ∥T ∗Φ − φ∥2
X + σ2

∥∥∥∥C− 1
2

0 V ∗Φ
∥∥∥∥2

X
,

where V is a unitary operator such that T = V |T |.
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Interpretation as regularized test
MAP test ΨMAP corresponds to regularized test ΨΦMAP,cMAP with

cMAP := ⟨m0, T ∗ΦMAP − φ⟩X .

Theorem [Kretschmann, Wachsmuth, Werner 2022]
Under a priori assumptions on u†, for every φ ∈ ran T ∗, Φ ∈ Y , and α ∈ (0, 1), rejection
threshold c = c(φ, Φ, α) can be chosen such that regularized test

ΨΦ,c(Y ) = 1⟨Y ,Φ⟩ > c

has level α for testing H0 against H1.

MAP test ΨMAP has level α if prior mean m0 is chosen according to

⟨m0, T ∗ΦMAP − φ⟩X = c(φ, ΦMAP, α).
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Bonus slide: Optimality

Theorem [Kretschmann, Wachsmuth, Werner 2022]
For φ ∈ ran T ∗ and under a priori assumptions on u†, there exists optimal probe element
Φ† ∈ Y that maximizes power among all regularized level α tests.

Theorem
If T is compact with singular system (τk , ek , fk)k∈N and if

⟨φ, ek⟩X = 0 for all k ∈ N with ⟨T ∗Φ†, ek⟩X = 0,

then prior covariance C0 can be chosen such that power of ΨMAP is arbitrarily close to
power of optimal regularized test ΨΦ†,c(φ,Φ†,α).
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A priori assumptions on u†

Assumptions

1. Forward operator T is Hilbert–Schmidt and injective.
2. Spectral source condition

u† = (T ∗T )
ν
2 w , ∥w∥X ≤ ρ

for some w ∈ X and ν, ρ > 0.
3. Prior covariance operator

C0 = γ2(T ∗T )µ

for some γ > 0 and µ ≥ 1.
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A priori choice of prior covariance
Theorem (lower bound to power)
If µ > ν

2 − 1, then power of ΨMAP is at least

Pu† [ΨMAP(Y ) = 1] ≥ Q

Q−1(α) +
⟨φ,u†⟩

∥φ∥ − 2ργ
− ν

µ+1 σ
ν

µ+1

γ
1

µ+1 σ
µ

µ+1

 .

Corollary (distinguishability)
If µ > ν

2 − 1, then for any a priori choice

γ = γ0σω

with γ0 > 0 and ω ∈ (−µ, 1), power of ΦMAP converges to 1 as σ → 0.

▶ In the following, use constant a priori choice γ = γ0.
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Bonus slide: Separation rate

Corollary
Let (u†

σ)σ>0 be a family in X that satisfies H1,

lim
σ→0

⟨φ, u†
σ⟩X = 0 and lim

σ→0

⟨φ, u†
σ⟩X

σ
ν

ν+1
= ∞.

If µ > ν
2 − 1 and γ is chosen a priori as

γ = σ
ν−µ
ν+1 ,

then the power of ΦMAP for u†
σ converges to 1 as σ → 0.
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Oracle choice of prior covariance

▶ MAP test ΨMAP has power

Pu† [ΨMAP(Y ) = 1] = Q
(

Q−1(α) − JTu†(ΦMAP)
σ

)
,

with JTu† : Y → R [Kretschmann, Wachsmuth, Werner 2022].

Oracle MAP test
Choose γ > 0 in C0 = γ2(T ∗T )µ to maximize power of ΨMAP, i.e., as minimizer of

γ 7→ JTu†(ΦMAP(γ)).

▶ Objective functional JTu† unaccessible.
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A posteriori choice of prior covariance

▶ Use empirical objective functional JY instead of JTu† .

A posteriori MAP test
Choose γ > 0 in C0 = γ2(T ∗T )µ as minimizer of

γ 7→ JY (ΦMAP(γ)) + ω(log γ)2

for some ω > 0.

▶ Due to dependence of ΦMAP on Y via γ for this choice, it is no longer guaranteed
that test has level α.

25 / 34



Numerical simulations

Considered problems

1. Deconvolution in 1D with kernel h,

(Fh)(ξ) =
(
1 + 0.062ξ2

)−2
for all ξ ∈ R.

2. Differentiation: Estimate second weak derivative of function y ∈ H2(0, 1).

3. Backward heat equation on (0, 1) with Dirichlet boundary conditions.

▶ Choose truth u† such that source condition is satisfied with ν = 1.
▶ Choose prior smoothness µ = 1.
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Considered scenarios

▶ Construct a posteriori MAP test with nominal level α̃ = 0.05 and all other tests
with level α = 0.1.

▶ Compare power of different MAP tests with power of unregularized test in following
two scenarios:

φ ∈ ran T ∗

▶ Choose φ as scaled β-kernel.
▶ Unregularized test well-defined.

φ /∈ ran T ∗

▶ Choose φ as indicator function.
▶ Unregularized test formally not

defined.
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Considered scenarios
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Numerical results
Empirical level of a posteriori MAP test remains below α̃ = 0.05 throughout all noise
levels, problems, and scenarios.
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Numerical results: Deconvolution
Power of tests for different noise levels σ.
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Numerical results: Differentiation
Power of tests for different noise levels σ.
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Numerical results: Backward heat equation
Power of tests for different noise levels σ.
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Conclusion

▶ MAP test based upon Gaussian prior can be evaluated via Tikhonov–Phillips
regularization.

▶ MAP test is defined for any feature described by bounded linear functional φ ∈ X ∗.
▶ Regularizing effect allows feature testing in noise regimes where unregularized

testing is unfeasible.

Outlook
▶ Construct MAP tests simultaneously for family of features.
▶ Other choices of prior distribution.
▶ Apply MAP tests to nonlinear inverse problems.
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