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Multiscale inference

•We are interested in specific features of an unknown function or density u† such as its
modes, convexity, monotonicity, or support.
• Many such features can be described by the application of a family of bounded linear

functionals ϕ corresponding to different locations and length scales.

Examples

• Support of a non-negative function u† can be described by non-negative functions
ϕ with suppϕ = [a, b] for a family of intervals [a, b] of different size and location:
Intersection of suppu† with [a, b] corresponds to

∫
ϕ (x )u†(x )dx =

〈
ϕ,u†〉

L2 > 0.
•Monotonicity or convexity of a function can be described using its 1st or 2nd derivative.

•We perform statistical inference for linear functionals by means of hypothesis testing.
Specifically, we test

H0 :
〈
ϕ,u†〉 = 0 vs. H1 :

〈
ϕ,u†〉 > 0.

Inverse problem set-up

We are interested in a quantity u† ∈ X that cannot be observed directly. Instead, indirect
noisy measurementsY are available. The relationship between u† andY is modelled as

Y = T u† + σZ ,

whereT : X → Y is a bounded linear operator between a real Banach space X and a real
Hilbert space Y, Z is a standard white Gaussian noise process on Y, and σ > 0 is the
noise level.

Examples

1. Deconvolution: Deblurring of an image, e.g.,
in medical imaging procedures, microscopy,
astronomy.T = Tconv convolution operator
on X = L2(−1, 1). −0.2 −0.1 0 0.1 0.2
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Point spread function

2. Differentiation: Estimating the second weak derivative of a function y † ∈ H 2(0, 1).
T = Tantider antiderivative operator on X = L2(0, 1).

3. Backwards heat equation: Given a temperature distribution y † on [0, 1] at time t0 > 0,
estimate the initial temperature distribution u† at time 0.T = Theat solution operator
to forward heat equation on X = L2(0, 1).

Difficulty: The ill-posed of the problem prevents the reconstruction of u† using standard
methods.
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Regularised hypothesis testing [1]

• Problem: Classical plug-in tests

Ψ0(Y ) := 1⟨Y ,Φ0⟩ > c =

{
1 if ⟨Y ,Φ0⟩ > c,

0 otherwise,

based upon unbiased linear estimators ⟨Y ,Φ0⟩ for
〈
ϕ,u†〉 can have arbitrarily low

power or may not be available (when ϕ < ranT ∗) due to ill-posedness of the problem.
• Idea: Use plug-in tests ΨΦ(Y ) := 1⟨Y ,Φ⟩ > c based upon linear estimators ⟨Y ,Φ⟩ related

to variational regularisation methods to overcome these issues, i.e., choose the probe
element Φ as minimiser of an objective functional.
• Under certain regularity assumptions on u†, for any ϕ ∈ ranT ∗, any nonzero Φ ∈ Y,
and any α ∈ (0, 1), the rejection threshold c can be chosen such that the regularised
test ΨΦ has at most level α .

Possible choices of probe element Φ

1. Choose Φ ∈ Y to maximise the power of the regularised test ΨΦ for testing H0

against H1 [1].
2. Choose Φ ∈ Y as Tikhonov-regularised solution to T ∗Φ0 = ϕ. Such a Tikhonov-

regularised testΨΦ corresponds to a maximum a posteriori test based upon a Gaussian
prior distribution, which is constructed using a Bayesian approach [2].

Optimal regularised hypothesis testing [1]

Difficulties: The objective functional related to the power of the regularised test ΨΦ is not
convex and requires knowledge of the truth u†.

Solutions

1. Show that the original optimisation problem is equivalent to a constrained convex
surrogate problem that admits an efficient numerical solution.

2. Estimate the power of the regularised test ΨΦ based upon the dataY and minimise a
corresponding empirical objective functional.

Restrictions: This approach requires two independent measurementsY1 andY2.

Maximum a posteriori testing [2]

We consider the problem from a Bayesian perspective and model

Y = TU + σZ ,

where a Gaussian prior distribution N(m0,C0) is assigned toU , and X is a real Hilbert
space. The maximum a posteriori (MAP) test ΨMAP rejects if

Ð [⟨ϕ,U ⟩ > 0|Y ] > Ð [⟨ϕ,U ⟩ ≤ 0|Y ] .
It corresponds to a regularised test ΨMAP = ΨΦMAP, where ΦMAP is the minimiser of a
Tikhonov–Phillips functional.

Numerical simulations [1, 2]

• Consider indicator function ϕ on the interval [c, c + l ] with l ≈ 0.020.
• Choose truth u† as symmetric β -kernel on the interval [c + 1

3l , c +
4
3l ].

• Construct MAP test using prior covariance C0 := γ2T ∗T with γ > 0.
• Choose γ a priori depending on the noise level σ , or maximise the estimated power of
the MAP test based upon the dataY .
• Implementation of forward operatorT and computation of probe element ΦMAP for MAP
test via fast Fourier transform.
• Computation of probe elementΦ† for optimal regularised test using primal dual proximal
splitting method.

Deconvolution

−0.05 0 0.05 0.1

0

10

20

30

40 ϕ

u† ∈ H 1

u† ∈ H 4

10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

Noise level σ

Po
we

r

u† ∈ H 1(−1, 1)

unreg. test
opt. reg. test

emp. opt. reg. test

10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

Noise level σ

Po
we

r

u† ∈ H 4(−1, 1)

unreg. test
opt. MAP test

a priori MAP test
emp. opt. MAP test

Differentiation
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Backwards heat equation
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