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Multiscale inference

-We are interested in specific features of an unknown function or density u" such as its
modes, convexity, monotonicity, or support.

- Many such features can be described by the application of a family of bounded linear
functionals ¢ corresponding to different locations and length scales.

- Support of a non-negative function v’ can be described by non-negative functions
@ with supp @ = | a, b] for a family of intervals | a, b| of different size and location:
Intersection of supp u™ with [a, b] corresponds to [ ¢(x)u'(x)dx = (¢, u’), , > 0.

- Monotonicity or convexity of a function can be described using its 1st or 2nd derivative.
- /

- We perform statistical inference for linear functionals by means of hypothesis testing.
Specifically, we test
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Ho: {p,u"y =0 vs. Hy: {p,u") > 0.
- 0: (¢su') (@, u") )

Inverse problem set-up

We are interested in a quantity u’ € X that cannot be observed directly. Instead, indirect
noisy measurements Y are available. The relationship between v" and Y is modelled as

Y =Tu' +0Z,

where T: X — Y is a bounded linear operator between a real Banach space X and a real
Hilbert space Y, Z is a standard white Gaussian noise process on YV, and o > O is the
noise level.

1. Deconvolution: Deblurring of an image, e.g., Point spread function
In medical imaging procedures, microscopy, o9 |

astronomy. T = T, convolution operator 18

on X = L%(-1,1). 02 -0 0 0.1 0.2

2. Differentiation: Estimating the second weak derivative of a function y' € H?(0, 1).
T = T.ntider antiderivative operator on X = L?(0, 1).

3. Backwards heat equation: Given a temperature distribution y ¥ on [0, 1] attime ¢y > O,
estimate the initial temperature distribution u™ at time 0. T = T; .5 solution operator
to forward heat equation on X = L%(0, 1).
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Regularised hypothesis testing [1]

 Problem: Classical plug-in tests

(
1 if (Y. dy) > c,
Yo(Y) == Tiyogysc = 3

KO otherwise,

based upon unbiased linear estimators (Y, o) for (¢, u’) can have arbitrarily low
power or may not be available (when ¢ ¢ ran T*) due to ill-posedness of the problem.

- Idea: Use plug-in tests Yo (Y') := 1(y.9) > - based upon linear estimators (Y, ®) related
to variational regularisation methods to overcome these issues, i.e., choose the probe
element ® as minimiser of an objective functional.

- Under certain regularity assumptions on u', for any ¢ € ran T*, any nonzero ® € Y,
and any o € (0, 1), the rejection threshold ¢ can be chosen such that the regularised
test W4 has at most level a.

Possible choices of probe element

1.Choose ® € VY to maximise the power of the regularised test Yo for testing Hy
against H; [1].

2.Choose ® € Y as Tikhonov-regularised solution to 7*®y = ¢. Such a Tikhonov-
regularised test W¢ corresponds to a maximum a posteriori test based upon a Gaussian

prior distribution, which is constructed using a Bayesian approach [2].
\- /
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Optimal regularised hypothesis testing [1]

Difficulties: The objective functional related to the power of the regularised test W is not
convex and requires knowledge of the truth v".

1. Show that the original optimisation problem is equivalent to a constrained convex
surrogate problem that admits an efficient numerical solution.

2. Estimate the power of the regularised test W¢ based upon the data Y and minimise a

corresponding empirical objective functional.
\- /

Restrictions: This approach requires two independent measurements Y; and Y5.

\- /
Difficulty: The ill-posed of the problem prevents the reconstruction of u' using standard
methods.

\_ /

Acknowledgements

The authors are supported by the German Research Foundation (DFG) under grant
WE 6204/2-1. The research of RK has been partially funded by the German Research

\_ /

Maximum a posteriori testing [2]

We consider the problem from a Bayesian perspective and model
Y=TU+0oZ,

where a Gaussian prior distribution N (mq, Cy) is assigned to U, and X is a real Hilbert
space. The maximum a posteriori (MAP) test Y,,p rejects if

P [{p,U) >0|Y] > P [{ep,U) <0|Y].

It corresponds to a regularised test Wy, = Yo . , where ®y,p is the minimiser of a
Tikhonov-Phillips functional.
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Numerical simulations [1, 2]

- Consider indicator function ¢ on the interval | ¢, ¢ + /] with / = 0.020.
- Choose truth u' as symmetric B-kernel on the interval [c + %/, c + %/].
- Construct MAP test using prior covariance Cp := y*T*T with y > O.

- Choose y a priori depending on the noise level o, or maximise the estimated power of
the MAP test based upon the data Y.

« Implementation of forward operator 7 and computation of probe element ®y,p for MAP
test via fast Fourier transform.

- Computation of probe element @ for optimal regularised test using primal dual proximal
splitting method.
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