MULTISCALE INFERENCE FOR INVERSE PROBLEMS VIA REGULARISED HYPOTHESIS TESTING

Remo Kretschmann¹, Daniel Wachsmuth², and Frank Werner²

¹Institute of Mathematics, University of Potsdam ²Institute of Mathematics, University of Würzburg

https://www.remokretschmann.de

Multiscale inference

- •We are interested in **specific features** of an unknown function or density u^{\dagger} such as its modes, convexity, monotonicity, or support.
- Many such features can be described by the application of a family of **bounded linear** functionals φ corresponding to different locations and length scales.

Examples

- Support of a non-negative function u^{\dagger} can be described by non-negative functions φ with supp $\varphi = [a, b]$ for a family of intervals [a, b] of different size and location: Intersection of supp u^{\dagger} with [a, b] corresponds to $\int \varphi(x)u^{\dagger}(x)\mathrm{d}x = \left\langle \varphi, u^{\dagger} \right\rangle_{L^{2}} > 0$.
- Monotonicity or convexity of a function can be described using its 1st or 2nd derivative.
- We perform statistical inference for linear functionals by means of **hypothesis testing**. Specifically, we test

$$H_0:\left\langle oldsymbol{arphi},u^\dagger
ight
angle =0 \qquad ext{vs.} \qquad H_1:\left\langle oldsymbol{arphi},u^\dagger
ight
angle >0.$$

Inverse problem set-up

We are interested in a quantity $u^{\dagger} \in X$ that **cannot be observed** directly. Instead, **indirect noisy measurements** Y are available. The relationship between u^{\dagger} and Y is modelled as

$$Y = Tu^{\dagger} + \sigma Z,$$

where $T: \mathcal{X} \to \mathcal{Y}$ is a bounded **linear operator** between a real Banach space \mathcal{X} and a real Hilbert space \mathcal{Y} , Z is a standard **white Gaussian noise process** on \mathcal{Y} , and $\sigma > 0$ is the noise level.

Examples

1. **Deconvolution:** Deblurring of an image, e.g., in medical imaging procedures, microscopy, astronomy. $T = T_{conv}$ convolution operator on $\mathcal{X} = L^2(-1, 1)$.

- 2. **Differentiation:** Estimating the second weak derivative of a function $y^{\dagger} \in H^2(0, 1)$. $T = T_{\text{antider}}$ antiderivative operator on $X = L^2(0, 1)$.
- 3. **Backwards heat equation:** Given a temperature distribution y^{\dagger} on [0, 1] at time $t_0 > 0$, estimate the initial temperature distribution u^{\dagger} at time 0. $T = T_{\text{heat}}$ solution operator to forward heat equation on $\mathcal{X} = L^2(0, 1)$.

Difficulty: The **ill-posed** of the problem prevents the reconstruction of u^{\dagger} using standard methods.

Acknowledgements

The authors are supported by the German Research Foundation (DFG) under grant WE 6204/2-1. The research of RK has been partially funded by the German Research Foundation (DFG) under project 318763901 — SFB 1294 Data Assimilation.

Regularised hypothesis testing [1]

• Problem: Classical plug-in tests

$$\Psi_0(Y) := \mathbb{1}_{\langle Y, \Phi_0 \rangle > c} = \begin{cases} 1 & \text{if } \langle Y, \Phi_0 \rangle > c, \\ 0 & \text{otherwise,} \end{cases}$$

based upon **unbiased linear estimators** $\langle Y, \Phi_0 \rangle$ for $\langle \varphi, u^{\dagger} \rangle$ can have **arbitrarily low power** or may **not** be **available** (when $\varphi \notin \operatorname{ran} T^*$) due to ill-posedness of the problem.

- Idea: Use plug-in tests $\Psi_{\Phi}(Y) := \mathbb{1}_{\langle Y, \Phi \rangle > c}$ based upon linear estimators $\langle Y, \Phi \rangle$ related to variational regularisation methods to overcome these issues, i.e., choose the probe element Φ as minimiser of an objective functional.
- Under certain regularity assumptions on u^{\dagger} , for any $\varphi \in \overline{\operatorname{ran} T^*}$, any nonzero $\Phi \in \mathcal{Y}$, and any $\alpha \in (0, 1)$, the rejection threshold c can be chosen such that the **regularised** test Ψ_{Φ} has at most level α .

Possible choices of probe element Φ

- 1. Choose $\Phi \in \mathcal{Y}$ to **maximise** the **power** of the regularised test Ψ_{Φ} for testing H_0 against H_1 [1].
- 2. Choose $\Phi \in \mathcal{Y}$ as **Tikhonov-regularised solution** to $T^*\Phi_0 = \varphi$. Such a Tikhonov-regularised test Ψ_Φ corresponds to a **maximum a posteriori test** based upon a Gaussian prior distribution, which is constructed using a **Bayesian approach** [2].

Optimal regularised hypothesis testing [1]

Difficulties: The **objective functional** related to the power of the regularised test Ψ_{Φ} is **not convex** and **requires knowledge of the truth** u^{\dagger} .

Solutions

- 1. Show that the original optimisation problem is equivalent to a **constrained convex surrogate problem** that admits an efficient numerical solution.
- 2. **Estimate the power** of the regularised test Ψ_{Φ} based upon the data Y and **minimise** a corresponding **empirical objective functional**.

Restrictions: This approach requires two independent measurements Y_1 and Y_2 .

Maximum a posteriori testing [2]

We consider the problem from a **Bayesian perspective** and model

$$Y = TU + \sigma Z$$

where a **Gaussian prior distribution** $\mathcal{N}(m_0, C_0)$ is assigned to U, and X is a real Hilbert space. The **maximum a posteriori (MAP) test** Ψ_{MAP} rejects if

$$\mathbb{P}\left[\langle \varphi, U \rangle > 0 | Y\right] > \mathbb{P}\left[\langle \varphi, U \rangle \leq 0 | Y\right].$$

It corresponds to a **regularised test** $\Psi_{MAP} = \Psi_{\Phi_{MAP}}$, where Φ_{MAP} is the **minimiser** of a **Tikhonov–Phillips functional**.

Numerical simulations [1, 2]

- Consider **indicator function** φ on the interval [c, c+1] with $I \approx 0.020$.
- Choose **truth** u^{\dagger} as symmetric β -kernel on the interval $\left[c + \frac{1}{3}I, c + \frac{4}{3}I\right]$.
- Construct MAP test using **prior covariance** $C_0 := \gamma^2 T^* T$ with $\gamma > 0$.
- Choose γ a priori depending on the noise level σ , or maximise the estimated power of the MAP test based upon the data Y.
- Implementation of forward operator T and computation of probe element Φ_{MAP} for MAP test via fast Fourier transform.
- Computation of probe element Φ^{\dagger} for optimal regularised test using primal dual proximal splitting method.

References

- [1] R. Kretschmann, D. Wachsmuth, and F. Werner. Optimal regularized hypothesis testing in statistical inverse problems. *Inverse Problems*, 40(1):015013, 2024.
- [2] R. Kretschmann and F. Werner. Maximum a posteriori testing in statistical inverse problems. *Inverse Problems and Imaging*, 19(6):1268–1301, 2025.