GENERALISED MODES IN BAYESIAN INVERSE PROBLEMS

Christian Clason¹, Tapio Helin², **Remo Kretschmann**¹, and Petteri Piiroinen³

¹Faculty of Mathematics, University of Duisburg-Essen ²School of Engineering Science, Lappeenranta-Lahti University of Technology ³Department of Mathematics and Statistics, University of Helsinki

Framework

Nonparametric Bayesian inference

- 1. Unknown quantity x in separable Banach space X with prior distribution μ_0 .
- 2. **Noisy data** y in separable Hilbert space Y. For every $y \in Y$, the **posterior distribution** μ^y has a density w.r.t. the prior distribution

$$\frac{\mathrm{d}\mu^{y}}{\mathrm{d}\mu_{0}}(x) = \frac{\exp(-\Phi(x;y))}{Z(y)}$$

where $\Phi: X \times Y \to \mathbb{R}$ is the **negative log-likelihood** and

$$Z(y) := \int_{Y} \exp(-\Phi(x; y)) \, \mu_0(\mathrm{d}x) \in (0, \infty).$$

In particular, Bayesian inverse problems described by ill-posed operator equation.

Goals of this work [2]

- 1. **Extend definition** of **modes** and corresponding **MAP estimates** in **nonparametric Bayesian inference** to cover cases where previous approach fails, such as priors that are not quasi-invariant along any direction.
- 2. Show that our definition **coincides** with the previous one for a number of **commonly used prior measures** and find general **conditions** for **coincidence**.
- 3. Show that **generalised MAP estimates** based upon **priors with strictly bounded components** are given as **minimisers** of canonical objective functional.
- 4. Study consistency for Bayesian inverse problems.

Modes in Infinite-dimensional Spaces

In **finite-dimensional** spaces, **modes** of probability measure typically defined as **maximisers** of its **density** w.r.t. Lebesgue measure.

Problem: There exists no Lebesgue measure on infinite-dimensional separable Banach spaces.

For this reason, **modes** in **infinite-dimensional** spaces typically defined via **asymptotic** small ball probabilities [3, 5].

Definition

Let μ be a Borel probability measure on a separable Banach space X. A point $\hat{x} \in X$ is called a **(strong) mode** of μ if

$$\lim_{\delta \to 0} \frac{\mu(B^{\delta}(\hat{x}))}{\sup_{x \in X} \mu(B^{\delta}(x))} = 1,$$

where $B^{\delta}(x)$ denotes the open ball around $x \in X$ with radius δ .

Variational Characterisation of MAP Estimates

Let μ be a Borel probability measure on a separable Banach space X. An element $h \in X$ is called **admissible shift** if the shifted measure $\mu_h := \mu(\cdot - h)$ is equivalent to μ . Let H denote the **set of admissible shifts** for μ .

Definition

A function $I: H \to \mathbb{R}$ is called **Onsager-Machlup functional** for μ , if for all $h_1, h_2 \in H$ we have

 $\lim_{\delta \to 0} \frac{\mu(B^{\delta}(h_1))}{\mu(B^{\delta}(h_2))} = \exp(I(h_2) - I(h_1)).$

Maximum a posteriori (MAP) estimates defined as modes of posterior distribution μ^y . Under certain conditions, MAP estimates are precisely minimisers of Onsager–Machlup functional I for μ^y in case of Gaussian prior [3, 4] or Besov prior [1] and

$$I(x) = \Phi(x; y) + R(x).$$

Generalised Modes

Example (measure without mode)

The probability measure μ on $\mathbb R$ with Lebesgue density

$$p(x) = \begin{cases} 2(1-x) & \text{if } x \in [0,1], \\ 0 & \text{otherwise,} \end{cases}$$

does not have a mode at 0, since

$$\lim_{\delta \to 0} \frac{\mu(B^{\delta}(0))}{\sup_{x \in \mathbb{R}} \mu(B^{\delta}(x))} = \lim_{\delta \to 0} \frac{\mu(B^{\delta}(0))}{\mu(B^{\delta}(\delta))} = \frac{1}{2}.$$

There are applications where **strict bounds** on the admissible values of the parameter x emerge in a natural way, e.g., radiography, electrical impedance tomography.

Idea: Replace fixed center point \hat{x} in definition of mode by approximating sequence $\{w_{\delta}\}_{\delta>0}$ that converges to \hat{x} as $\delta\to 0$.

Definition

Let μ be a Borel probability measure on a separable Banach space X. A point $\hat{x} \in X$ is called a **generalised mode** of μ if for every positive sequence $\{\delta_n\}_{n\in\mathbb{N}}$ with $\delta_n \to 0$ there exists an **approximating sequence** $\{w_n\}_{n\in\mathbb{N}} \subset X$ such that $w_n \to \hat{x}$ in X and

$$\lim_{n\to\infty} \frac{\mu(B^{\delta_n}(w_n))}{\sup_{x\in X} \mu(B^{\delta_n}(x))} = 1.$$

In the previous example, $\hat{x} := 0$ is a generalised mode with $w_n := \delta_n$. For Gaussian measures, the strong mode is the only generalised mode.

Criteria for Coincidence of Strong and Generalised Modes

Consider general Borel probability measure μ on separable Banach space X.

Theorem

Let $\hat{x} \in X$ be a **generalised mode** of μ . Then \hat{x} is a **strong mode** if and only if for every sequence $\{\delta_n\}_{n\in\mathbb{N}}\subset (0,\infty)$ with $\delta_n\to 0$, there exists an approximating sequence $\{w_n\}_{n\in\mathbb{N}}\subset X$ with $w_n\to \hat{x}$ and

$$\lim_{n\to\infty}\frac{\mu(B^{\delta_n}(\hat{x}))}{\mu(B^{\delta_n}(w_n))}=1.$$

Corollary

Let $\hat{x} \in X$ be a generalised mode of μ . If there exists an r > 0 such that

$$\lim_{\delta \to 0} \frac{\mu(B^{\delta}(\hat{x}))}{\sup_{w \in B^{r}(\hat{x})} \mu(B^{\delta}(w))} = 1,$$

then \hat{x} is a strong mode.

Idea: Characterise convergence of approximating sequence by convergence rate.

Theorem

Let $\hat{x} \in X$ be a **generalised mode** of μ . If

1. for every positive sequence $\{\delta_n\}_{n\in\mathbb{N}}$ with $\delta_n\to 0$, there exists an approximating sequence $\{w_n\}_{n\in\mathbb{N}}$ such that

$$\lim_{n\to\infty}\frac{\|w_n-\hat{x}\|_X}{\delta_n}=0,$$

2. the family of functions $\{f_n\}_{n\in\mathbb{N}}$ on [0,1] defined by

$$f_n: [0,1] \to \mathbb{R}, \qquad f_n(r) := \frac{\mu(B^{r(\delta_n + \|w_n - \hat{x}\|_X)}(\hat{x}))}{\mu(B^{\delta_n + \|w_n - \hat{x}\|_X}(\hat{x}))},$$

is equicontinuous at r = 1,

then \hat{x} is a **strong mode**.

Idea: Characterise convergence of approximating sequence in subspace topology.

Theorem

Suppose that the space of admissible shifts H possesses a dense continuously embedded subspace $(E, \|\cdot\|_E) \subset H$ such that for every $h \in E$ the density of μ_h w.r.t. μ has a continuous representative $\frac{\mathrm{d}\mu_h}{\mathrm{d}\mu} \in C(X)$. Let $\hat{x} \in X$ be a generalised mode of μ . If

- 1. for every $\{\delta_n\} \subset (0, \infty)$ with $\delta_n \to 0$ there is an approximating sequence $\{w_n\}_{n\in\mathbb{N}} \subset \hat{x} + E$ with $\|w_n \hat{x}\|_E \to 0$,
- 2. there is an R > 0 such that

$$f_R: (E, \|\cdot\|_E) \to \mathbb{R}, \qquad f_R(h) := \sup_{x \in B^R(\hat{x})} \left| \frac{\mathrm{d}\mu_h}{\mathrm{d}\mu}(x) - 1 \right|$$

is continuous at h = 0,

then \hat{x} is a **strong mode**.

Corollary

Let $\hat{x} \in X$ be a generalised mode of μ that satisfies condition 1. If additionally

$$\lim_{h \to_E 0} \frac{\mathrm{d}\mu_h}{\mathrm{d}\mu}(\hat{x}) = 1$$

and there is an r > 0 such that the family

$$\left\{ \frac{\mathrm{d}\mu_h}{\mathrm{d}\mu} : h \in E, \|h\|_E < r \right\}$$

is equicontinuous in \hat{x} , then \hat{x} is a strong mode.

Modes of Uniform Prior Distribution

Idea: Define probability measure on separable subspace of ℓ^{∞} whose mass is concentrated on set of sequences with **strictly bounded components**.

Set

$$X := \overline{\operatorname{span}\{e_n\}_{n \in \mathbb{N}}} = \left\{ x \in \ell^{\infty} : \lim_{k \to \infty} x_k = 0 \right\} \subset \ell^{\infty},$$

where $\{e_n\}_{n\in\mathbb{N}}$ denotes the **standard unit vectors** in ℓ^{∞} , i.e., $\{e_n\}_k=1$ for n=k and 0 otherwise. Then, X equipped with $||x||_{\infty}:=\sup_{k\in\mathbb{N}}|x_k|$ is a separable Banach space.

Definition

For a **given sequence** $\{\gamma_n\}_{n\in\mathbb{N}}$ with $\gamma_k\geq 0$ for all $k\in\mathbb{N}$ and $\gamma_k\to 0$ define the X-valued random variable

$$\xi := \sum_{k=1}^{\infty} \gamma_k \xi_k e_k,$$

where $\{\xi_k\}_{k\in\mathbb{N}}$ are i.i.d. real-valued random variables, each **uniformly distributed** on [-1,1]. Then, define the **probability measure** μ_{γ} on X by

$$\mu_{\gamma}(A) := \mathbb{P}\left[\xi \in A\right] \quad \text{for all } A \in \mathcal{B}(X).$$

Question: What are the strong and generalised modes of μ_{γ} ?

Define

$$E_{\gamma} := \{ x \in X : |x_k| \le \gamma_k \text{ for all } k \in \mathbb{N} \},$$

$$E_{\gamma}^0 := \{ x \in X : |x_k| < \gamma_k \text{ for all } k \in \mathbb{N}, x_k \ne 0 \text{ for finitely many } k \in \mathbb{N} \}.$$

Theorem

- 1. Every point $x \in E_{\gamma}^{0}$ is a strong mode of μ_{γ} .
- 2. If there is an $m \in \mathbb{N}$ with $|x_m| = \gamma_m > 0$, then x is **not a strong mode** of μ_{γ} .

Proposition

- 1. There are $\gamma \in X$ and $x \in E_{\gamma} \setminus E_{\gamma}^{0}$ with $|x_{k}| < \gamma_{k}$ for all $k \in \mathbb{N}$ such that x is a strong mode of μ_{γ} .
- 2. There are $\gamma \in X$ and $x \in E_{\gamma} \setminus E_{\gamma}^{0}$ with $|x_{k}| < \gamma_{k}$ for all $k \in \mathbb{N}$ such that x is **not a strong mode** of μ_{γ} .

Theorem

A point $x \in X$ is a **generalised mode** of μ_{γ} if and only if $x \in E_{\gamma}$.

Variational Characterisation of Generalised MAP Estimates

Bayesian inference

- 1. Uniform prior distribution $\mu_0 := \mu_{\gamma}$ on $X := \{x \in \ell^{\infty} : \lim_{k \to \infty} x_k = 0\}$.
- 2. Fix $y \in Y$. **Posterior distribution** given by

$$\mu^{y}(\mathrm{d}x) = \frac{1}{Z} \exp(-\Phi(x)) \,\mu_{0}(\mathrm{d}x).$$

3. The function $\Phi: X \to \mathbb{R}$ is **Lipschitz continuous on bounded sets**, i.e., for every r > 0, there exists $L = L_r > 0$ such that for all $x_1, x_2 \in B^r(0)$ we have

$$|\Phi(x_1) - \Phi(x_2)| \le L||x_1 - x_2||_X.$$

Generalised MAP estimates defined as **generalised modes** of posterior distribution μ^y .

Goal: Characterise generalised MAP estimates as **minimisers** of appropriate objective functional.

Onsager–Machlup functional not defined for **prior distribution** μ_0 , but **generalised modes** of μ_0 are precisely **minimisers** of **indicator function** $\iota_{E_\gamma}: X \to \overline{\mathbb{R}} := \mathbb{R} \cup \infty$,

$$\iota_{E_{\gamma}} := \begin{cases} 0 & \text{if } x \in E_{\gamma}, \\ \infty & \text{otherwise.} \end{cases}$$

Define $I:X o \overline{\mathbb{R}}$,

$$I(x) := \Phi(x) + \iota_{E_x}(x).$$

Proposition (generalised Onsager–Machlup property)

Let
$$x_1, x_2 \in E_{\gamma}$$
 and $\{w_1^{\delta}\}_{\delta>0}, \{w_2^{\delta}\}_{\delta>0} \subset E_{\gamma}$ such that

1.
$$w_1^{\delta} \rightarrow x_1$$
 and $w_2^{\delta} \rightarrow x_2$ as $\delta \rightarrow 0$,

2.
$$w_1^{\delta}, w_2^{\delta} \in E_{\gamma}^{\delta}$$
 for all $\delta > 0$, where

$$E_{\gamma}^{\delta} := \{x \in X : |x_k| \leq \max\{\gamma_k - \delta, 0\} \text{ for all } k \in \mathbb{N}\} \subset E_{\gamma}.$$

Then,

$$\lim_{\delta \to 0} \frac{\mu^{y}(B^{\delta}(w_{1}^{\delta}))}{\mu^{y}(B^{\delta}(w_{2}^{\delta}))} = \exp(I(x_{2}) - I(x_{1})).$$

Main theorem

Suppose that Φ is **Lipschitz continuous on bounded sets**. Then, a point $\hat{x} \in X$ is a **generalised MAP estimate** for μ^y if and only if it is a **minimiser** of I.

Sketch of proof

1. For every $\delta > 0$, let x^{δ} denote a **maximiser** of

$$x \mapsto \mu^y(B^\delta(x)).$$

For every positive sequence $\{\delta_n\}_{n\in\mathbb{N}}$ with $\delta_n\to 0$, the sequence $\{x^{\delta_n}\}_{n\in\mathbb{N}}$ contains a **subsequence** that **converges strongly** in X to some $\bar{x}\in E_{\gamma}$.

- 2. Any cluster point $\bar{x} \in E_{\gamma}$ of $\{x^{\delta_n}\}_{n \in \mathbb{N}}$ is a minimiser of I.
- 3. Use 1, 2, Lipschitz continuity and generalised OM property to show proposition.

For inverse problems subject to Gaussian noise, **generalised MAP estimator** coincides with **Ivanov regularisation** using compact set E_{γ} . **Minimisers** generically lie **on boundary** of compact set if Ivanov functional is convex [6].

Consistency for Inverse Problems with Gaussian Noise

Bayesian inverse problems with uniform prior distribution $\mu_0 = \mu_{\gamma}$, finite-dimensional data $y \in Y := \mathbb{R}^K$, and additive Gaussian noise, governed by operator equation

$$y = F(x) + \delta \eta.$$

1. Nonlinear operator $F: X \to Y$.

2. **Gaussian noise** $\eta \sim \mathcal{N}(0, \Sigma)$ with positive definite covarance matrix $\Sigma \in \mathbb{R}^{K \times K}$, scaled by $\delta > 0$. **Negative log-likelihood** given by

$$\Phi(x; y) = \frac{1}{2\delta^2} \| \Sigma^{-\frac{1}{2}} (F(x) - y) \|_{Y}^{2}.$$

Goal: Show consistency in small noise limit in frequentist setup.

True solution $x^{\dagger} \in E_{\gamma}$, sequence $\{y_n\}_{n \in \mathbb{N}} \subset Y$ of measurements given by

$$y_n = F(x^{\dagger}) + \delta_n \eta_n,$$

where $\delta_n \to 0$ and $\eta_n \sim \mathcal{N}(0, \Sigma)$ are i.i.d. Gaussian random variables. Theorem

Suppose that $F: X \to Y$ is **closed** and $x^{\dagger} \in E_{\gamma}$. For every $n \in \mathbb{N}$, let $x_n \in X$ be a **minimiser** of

 $I^{y_n}(x) := \frac{1}{2\delta^2} \| \Sigma^{-\frac{1}{2}} (F(x) - y_n) \|_Y^2 + \iota_{E_\gamma}(x).$ Then, $\{x_n\}_{n\in\mathbb{N}}$ contains a **convergent subsequence** whose limit $\bar{x}\in E_\gamma$ satisfies $F(\bar{x}) = F(x^\dagger)$ almost surely.

Corollary

If F is **injective**, then $x_n \to x^{\dagger}$ in probability as $n \to \infty$.

References

- [1] S. Agapiou, M. Burger, M. Dashti, and T. Helin. Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems. *Inverse Problems*, 34(4):045002, 2018.
- [2] C. Clason, T. Helin, R. Kretschmann, and P. Piiroinen. Generalized modes in Bayesian inverse problems. SIAM/ASA J. Uncertainty Quantification, 7(2):625–684, 2019.
- [3] M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss. MAP estimators and their consistency in Bayesian nonparametric inverse problems. *Inverse Problems*, 29(9):095017, 2013.
 [4] R. Kretschmann. *Nonparametric Bayesian Inverse Problems with Laplacian Noise*.
- PhD thesis, Universität Duisburg-Essen, 2019. Submitted.

 [5] H. C. Lie and T. J. Sullivan. Equivalence of weak and strong modes of measures on
- topological vector spaces. *Inverse Problems*, 34(11):115013, 2018.

 [6] A. Neubauer and R. Ramlau. On convergence rates for quasi-solutions of ill-posed problems. *Electron. Trans. Numer. Anal.*, 41:81–92, 2014.