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Framework

Nonparametric Bayesian inference

1. Unknown quantity x in separable Banach space X with prior distribution µ0.

2. Noisy data y in separable Hilbert spaceY . For every y ∈ Y , the posterior distri-
bution µy has a density w.r.t. the prior distribution

dµy

dµ0
(x ) =

exp(−Φ(x ; y ))
Z (y )

where Φ: X ×Y → Ò is the negative log-likelihood and

Z (y ) :=
∫
X
exp(−Φ(x ; y )) µ0(dx ) ∈ (0,∞).

In particular, Bayesian inverse problems described by ill-posed operator equation.

Goals of this work [2]

1. Extend de�nition of modes and corresponding MAP estimates in nonparametric
Bayesian inference to cover cases where previous approach fails, such as priors
that are not quasi-invariant along any direction.

2. Show that our de�nition coincideswith the previous one for a number of commonly
used prior measures and �nd general conditions for coincidence.

3. Show that generalised MAP estimates based upon priors with strictly bounded
components are given as minimisers of canonical objective functional.

4. Study consistency for Bayesian inverse problems.

Modes in In�nite-dimensional Spaces

In �nite-dimensional spaces, modes of probability measure typically de�ned as max-
imisers of its density w.r.t. Lebesgue measure.

Problem: There exists no Lebesgue measure on in�nite-dimensional separable
Banach spaces.

For this reason, modes in in�nite-dimensional spaces typically de�ned via asymptotic
small ball probabilities [3, 5].

De�nition

Let µ be a Borel probability measure on a separable Banach space X . A point x̂ ∈ X
is called a (strong) mode of µ if

lim
δ→0

µ(Bδ(x̂ ))

supx∈X µ(Bδ(x ))
= 1,

where Bδ(x ) denotes the open ball around x ∈ X with radius δ .

Variational Characterisation of MAP Estimates

Let µ be a Borel probability measure on a separable Banach spaceX . An element h ∈ X
is called admissible shift if the shifted measure µh := µ(· − h) is equivalent to µ. Let
H denote the set of admissible shifts for µ.

De�nition

A function I : H → Ò is called Onsager–Machlup functional for µ, if for all h1, h2 ∈
H we have

lim
δ→0

µ(Bδ(h1))

µ(Bδ(h2))
= exp(I (h2) − I (h1)).

Maximum a posteriori (MAP) estimates de�ned as modes of posterior distribution µy .
Under certain conditions, MAP estimates are precisely minimisers of Onsager–Machlup
functional I for µy in case of Gaussian prior [3, 4] or Besov prior [1] and

I (x ) = Φ(x ; y ) + R (x ).

Generalised Modes

Example (measure without mode)

The probability measure µ on Ò with Lebesgue density

p(x ) =

{
2(1 − x ) if x ∈ [0, 1],
0 otherwise,
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does not have a mode at 0, since

lim
δ→0

µ(Bδ(0))

supx∈Ò µ(Bδ(x ))
= lim
δ→0

µ(Bδ(0))

µ(Bδ(δ))
=
1

2
.

There are applications where strict bounds on the admissible values of the parameter
x emerge in a natural way, e.g., radiography, electrical impedance tomography.

Idea: Replace �xed center point x̂ in de�nition of mode by approximating sequence
{wδ}δ>0 that converges to x̂ as δ → 0.

De�nition

Let µ be a Borel probability measure on a separable Banach space X . A point
x̂ ∈ X is called a generalised mode of µ if for every positive sequence {δn}n∈Î
with δn → 0 there exists an approximating sequence {wn}n∈Î ⊂ X such that
wn → x̂ in X and

lim
n→∞

µ(Bδn(wn))

supx∈X µ(Bδn(x ))
= 1.

In the previous example, x̂ := 0 is a generalised mode withwn := δn .
For Gaussian measures, the strong mode is the only generalised mode.

Criteria for Coincidence of Strong and Generalised Modes

Consider general Borel probability measure µ on separable Banach space X .

Theorem

Let x̂ ∈ X be a generalised mode of µ. Then x̂ is a strong mode if and only if for
every sequence {δn}n∈Î ⊂ (0,∞) with δn → 0, there exists an approximating
sequence {wn}n∈Î ⊂ X withwn → x̂ and

lim
n→∞

µ(Bδn(x̂ ))

µ(Bδn(wn))
= 1.

Corollary

Let x̂ ∈ X be a generalised mode of µ. If there exists an r > 0 such that

lim
δ→0

µ(Bδ(x̂ ))

supw∈B r (x̂ ) µ(Bδ(w ))
= 1,

then x̂ is a strong mode.

Idea: Characterise convergence of approximating sequence by convergence rate.

Theorem

Let x̂ ∈ X be a generalised mode of µ. If

1. for every positive sequence {δn}n∈Î with δn → 0, there exists an approximat-
ing sequence {wn}n∈Î such that

lim
n→∞

‖wn − x̂ ‖X
δn

= 0,

2. the family of functions {fn}n∈Î on [0, 1] de�ned by

fn : [0, 1] → Ò, fn(r ) :=
µ(B r (δn+‖wn−x̂ ‖X )(x̂ ))

µ(Bδn+‖wn−x̂ ‖X (x̂ ))
,

is equicontinuous at r = 1,

then x̂ is a strong mode.

Idea: Characterise convergence of approximating sequence in subspace topology.

Theorem

Suppose that the space of admissible shifts H possesses a dense continuously
embedded subspace (E , ‖·‖E ) ⊂ H such that for every h ∈ E the density of µh
w.r.t. µ has a continuous representative dµh

dµ ∈ C (X ). Let x̂ ∈ X be a generalised
mode of µ. If

1. for every {δn} ⊂ (0,∞) with δn → 0 there is an approximating sequence
{wn}n∈Î ⊂ x̂ + E with ‖wn − x̂ ‖E → 0,

2. there is an R > 0 such that

fR : (E , ‖·‖E ) → Ò, fR (h) := sup
x∈BR (x̂ )

����dµhdµ (x ) − 1����
is continuous at h = 0,

then x̂ is a strong mode.

Corollary

Let x̂ ∈ X be a generalised mode of µ that satis�es condition 1. If additionally

lim
h→E0

dµh
dµ
(x̂ ) = 1

and there is an r > 0 such that the family{
dµh
dµ

: h ∈ E , ‖h‖E < r
}

is equicontinuous in x̂ , then x̂ is a strong mode.

Modes of Uniform Prior Distribution

Idea: De�ne probability measure on separable subspace of `∞ whose mass is con-
centrated on set of sequences with strictly bounded components.

Set
X := span{en}n∈Î =

{
x ∈ `∞ : lim

k→∞
xk = 0

}
⊂ `∞,

where {en}n∈Î denotes the standard unit vectors in `∞, i.e., {en}k = 1 for n = k and
0 otherwise. Then, X equipped with ‖x ‖∞ := supk ∈Î |xk | is a separable Banach space.

De�nition

For a given sequence {γn}n∈Î with γk ≥ 0 for all k ∈ Î and γk → 0 de�ne the
X -valued random variable

ξ :=
∞∑
k=1

γk ξk ek ,

where {ξk }k ∈Î are i.i.d. real-valued random variables, each uniformly distributed
on [−1, 1]. Then, de�ne the probability measure µγ on X by

µγ(A) := Ð [ξ ∈ A] for all A ∈ B(X ).

Question: What are the strong and generalised modes of µγ?

De�ne

Eγ := {x ∈ X : |xk | ≤ γk for all k ∈ Î},

E 0γ := {x ∈ X : |xk | < γk for all k ∈ Î, xk , 0 for �nitely many k ∈ Î}.

Theorem

1. Every point x ∈ E 0γ is a strong mode of µγ .

2. If there is anm ∈ Î with |xm | = γm > 0, then x is not a strong mode of µγ .

Proposition

1. There are γ ∈ X and x ∈ Eγ \ E 0γ with |xk | < γk for all k ∈ Î such that x is
a strong mode of µγ .

2. There are γ ∈ X and x ∈ Eγ \ E 0γ with |xk | < γk for all k ∈ Î such that x is
not a strong mode of µγ .

Theorem

A point x ∈ X is a generalised mode of µγ if and only if x ∈ Eγ .

Variational Characterisation of Generalised MAP Estimates

Bayesian inference

1. Uniform prior distribution µ0 := µγ on X := {x ∈ `∞ : limk→∞ xk = 0}.

2. Fix y ∈ Y . Posterior distribution given by

µy (dx ) =
1

Z
exp(−Φ(x )) µ0(dx ).

3. The function Φ: X → Ò is Lipschitz continuous on bounded sets, i.e., for every
r > 0, there exists L = Lr > 0 such that for all x1, x2 ∈ B r (0) we have

|Φ(x1) − Φ(x2)| ≤ L‖x1 − x2‖X .

Generalised MAP estimates de�ned as generalised modes of posterior distribution µy .

Goal: Characterise generalised MAP estimates asminimisers of appropriate objective
functional.

Onsager–Machlup functional not de�ned for prior distribution µ0, but generalised
modes of µ0 are precisely minimisers of indicator function ιEγ : X → Ò := Ò ∪∞,

ιEγ :=

{
0 if x ∈ Eγ,
∞ otherwise.

De�ne I : X → Ò,
I (x ) := Φ(x ) + ιEγ(x ).

Proposition (generalised Onsager–Machlup property)

Let x1, x2 ∈ Eγ and {w δ1 }δ>0, {w
δ
2 }δ>0 ⊂ Eγ such that

1. w δ1 → x1 andw δ2 → x2 as δ → 0,

2. w δ1 ,w
δ
2 ∈ E

δ
γ for all δ > 0, where

E δγ := {x ∈ X : |xk | ≤ max{γk − δ, 0} for all k ∈ Î} ⊂ Eγ .

Then,

lim
δ→0

µy (Bδ(w δ1 ))

µy (Bδ(w δ2 ))
= exp(I (x2) − I (x1)).

Main theorem

Suppose that Φ is Lipschitz continuous on bounded sets. Then, a point x̂ ∈ X is a
generalised MAP estimate for µy if and only if it is a minimiser of I .

Sketch of proof

1. For every δ > 0, let x δ denote a maximiser of

x 7→ µy (Bδ(x )).

For every positive sequence {δn}n∈Î with δn → 0, the sequence {x δn}n∈Î
contains a subsequence that converges strongly in X to some x̄ ∈ Eγ .

2. Any cluster point x̄ ∈ Eγ of {x δn}n∈Î is a minimiser of I .

3. Use 1, 2, Lipschitz continuity and generalised OM property to show proposition.

For inverse problems subject to Gaussian noise, generalised MAP estimator coincides
with Ivanov regularisation using compact setEγ .Minimisers generically lie onboundary
of compact set if Ivanov functional is convex [6].

Consistency for Inverse Problems with Gaussian Noise

Bayesian inverseproblemswith uniformprior distribution µ0 = µγ , �nite-dimensional
data y ∈ Y := ÒK , and additive Gaussian noise, governed by operator equation

y = F (x ) + δη.

1. Nonlinear operator F : X →Y .

2. Gaussian noise η ∼ N(0, Σ) with positive de�nite covarance matrix Σ ∈ ÒK×K ,
scaled by δ > 0. Negative log-likelihood given by

Φ(x ; y ) =
1

2δ2



Σ−12(F (x ) − y )

2Y .
Goal: Show consistency in small noise limit in frequentist setup.

True solution x† ∈ Eγ , sequence {yn}n∈Î ⊂ Y of measurements given by

yn = F (x
†) + δnηn,

where δn → 0 and ηn ∼ N(0, Σ) are i.i.d. Gaussian random variables.

Theorem

Suppose that F : X →Y is closed and x† ∈ Eγ . For every n ∈ Î, let xn ∈ X be a
minimiser of

I yn(x ) :=
1

2δ2



Σ−12(F (x ) − yn)

2Y + ιEγ(x ).
Then, {xn}n∈Î contains a convergent subsequence whose limit x̄ ∈ Eγ satis�es
F (x̄ ) = F (x†) almost surely.

Corollary

If F is injective, then xn → x† in probability as n →∞.
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